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- 1.1 Radiometric Calibration and stable temperature conditions

o The Working Group on Calibration and
Validation (WGCV) of the Committee on Earth
Observation Satellites (CEOS) define “Calibration”

The process of quantitatively defining the
system response to KOW) controlled signalinputs

——Belward, A. S. International co-operation in
satellite sensor calibration; the role of the CEOS
Working Group on Calibration and Validation. Adv.
Space Res. 23, 1443-1448 (1999).

__________________________________________________________________________________________________________________________________

R:ZakDN" ----» R=gainsx DN + offset
k=0

= fitting(R,,DN );i =0,1,---, N~ L;k=0,1,---, K -1

__________________________________________________________________________________________________________________________________

a, The kth Calibarion Coefficient

(R.DN,) The ith Pair of KiiOWR) Controlled fadiometric'source and fiSFesponse

fitting (R,,DN,) To calculate @, while K < N

NEMC N‘gw EREESSRPL (BxRZTEXSEUFREHL)




1.2 Unstable temperature of Radiant Cooler of AGRI on FY-4A

The temperatures of Radiant Cooler
of FY-2 (Stable)

FY-4A:

FengYun-4 Geostationry Meteorological
Satellite

AGRI:

Advanced Geostationary Radiation Imager

AR Temperature » Analyse the unstable temperatures
o —supported by National Natural
Science Foundation of China
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1.3 Radiometric Calibration-Net for the relation between
M RC coefficients and temperatures -

More details: (Boyang Chen, et al) IEEE TGRS, vol. 63, pp. 1-16, 2025

Radiometric Calibration using Artificial Intelligence: Constituting Uniform Observing

Calibration Equation: 1

System for Infrared Satellites

Download : https://ieeexplore.ieee.org/document/10855605

N
E,t E :
I5C = zi | —2—n o DR’
N . obs [‘J (sz;;rvb °tav, 4’3) ]

PC: photoconductance-type sensors

ZZ DN’ j=0
J
7 = . VA f 1 i > zj h ¢ ng DR/ .
obe V D oy I, = Z : PV: photovoltaic-type sensors
noise d ‘= $¢ Ad [no (00 +01) —a o1 wo ¢p] A g IMP,
a?c = ]F?C(h., c, A\, Q, Ag,no, Eg,t,m,7, V3, SRF g, 15, T, k, z5), Inputs: Outputs:
afv = Ffv(_h, c, N\, q,.82, Ag, no,IMPy1,, 0¢g,01. v, wo,SRF g, Temperatures Radiometric
ls, Ts, k, 2;),Vj € [0, N]. from all the O Callbr.ajuon
(4) components ~ TCeefficients
For more concise annotation, in the following we both in the optical aj/ ai
use a; Ito 1*epresentl aj‘?c._ af e _and ]Fj tol represent F?C,. ]F?V. paht of the 3
According to Equation 4, IF;, or F, is intrinsically complicated
Sensor

and varied conditions according to different sensors, e.g., for
traditional SBRC methods, a; 1s calculated by repetitively ob-
serving radiometric source over time, which is computationally
expensive.

S Radiometric Calibration Neural

Network (RCNN)



L 1.4 Workflow of AIRC

Collecting the
Radiometric Calibration

Collecting the
Tempratures of Optical

Coefficients Path
Time Matching
, A 4
/ . T
S ity e/
Inputs
v
Trainning the RCNN
) 4
y y
/ RCNN Model —
/ /
v
// 7
/ Operational RC /
/// Coefficients /

Eat nonw EXRDESZRHFO (ExRTEXRSEUFRES()

1. Collecting the RC coefficients.and the temperatures
of optical path

2. Time matching ang get training dataset: -

I

d; RC coefficients

!  Time of calibrating

Tm Temperatures of optical components

3. Train the RCNN

4. Operational RC using RCNN by inputting temperatures
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- 2.1 FY-4A AGRI ---- aArc experiment in infrared band

AGRI on FY-4A was launched on
11 Dec., 2016

NSMC NCSKW
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n 2.11 The temperatures of 8 components ---- inputs of RCNN
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2.13 The results of AIRC----Comparisons of labels and outputs of RCNN

0.00223 0.00223
+ Labels . . + Labels . Labels . . « Labels . L
| output of NN .+ output of NN ] Output of NN g8 |« outputof NN
0.00222 0.00222 4 . . 0.00286 & 0.00286 < . .
' " ¢ 2
. . .
0.00221 -
0.00221 ” 0.00284 - 0002841 o3 * . .
pn2En 0002201 ° . . ' > . " ’
o i o8 H . . i 0.00282 n 0.00282 - . .| '
g 0.00219 8 000219 | . s . g g . . :
= = . O = 0.00280 4 = ] v
0] | 0] . K @ A 0.00280 4 . . H
0.00218 0.00218 |
] ' . 1
0.00217 0.00217 4 ' . 9.00278 0.00278 4 ' 3
0.00216 | o2 s | .- ot o %
; . 0.00216 ... 0.00276 P W *te 5
2 e s i . &
0.00215 | . - os . . o . .
CH9_ training dataset J 0002151  CH9_ testing datasget . ooozra] CH10 training dataset . CH10 testing dataset .
. 0.00274
I R T RS R R oY .or oY oo 5 PSPPSR > O R R R T TS RIS
0\9“\9@9&0&0&0D\p&&&uQ\pa\l%\pg\’%\p&p SRR S S S S S Q\’o" X 0\9" AT qub‘e@ RIS \’&\9“\9@9&0@9@9 ISR
S S Sy S S e e ey U N A N N N A S N i
B A NN o S A S S S S A A S P S

g or g v P P PP
SN SYoSY eSS A A A AU A AT AT
9200000 0.0 o 100 o [0 0. 0 [0, 0. 0 [0 o [0 of
Y O OV YOO O O 0% O 0% 0% 0% 00 OO,
R N S SR S

Uy B
> 90 (o0 (0P (a0 a0 00 o0 0P o a0 a0 o0 0P o '@ox"’“\:@&
5 ADAN A AP AR AR AT AR A0 AR 4D T ART D74 AR AR AR AR AR AR AR
center wavelength: 6.25um
g ° ¢

center wavelength: 7.1 =
g b = Z
« lLabels « lLabels o Labels . o Labels .
0005144 » Outputof NN 0005144 . oOutputof NN * . % 000428 * Output of NN o 0004281+ . Qutput of NN .
: . . . 000427 ® . o .
0.00512 b 0.00512 * . Y H
H .. . s, . 0.00426 . 0.00426 - % "
0.00510 4 I s 0.00510 % 2 = ': :
g’_ ": 2 g’_ g_ e g_ 0.00425 - . s
& 000508 | 2 f 2 0.00508 ’ ) s s 0.00424 - s # i
n BT n O o O U 0.00424 . 2 i
L . vig
0.00506 e e . 0.00423 . ’
€ e & e . . .
. v i ., 0.00422 - : . "
0.00504 ] . o g . 0.00422 . . .
0.00504 s 5 . 3 o
= of - . . P e < .
ooosoa] CH11 training dataset CH11 testing dataset CH12 training dataset 0004214 CHI12 testing dataset
3 v v on b ok b it S o P P PP PP P PP S R T O U R U I JU I e 3 % % T T S L S P P P R P TR T LRI SRS
DA 70" 00 07 07 05 0 07 0 07, 0 A0 1070 W0 0" A0 1O 07 4 0% A0 A0 L0 0™ A0" L0 40" 0" \07 107 107,07 O O D7 07007070 40 "0 0 A0 A0 A0 740 A0 4D A0, Q" O (O O O 40" A0” A0 A0 10 0" 0" 10 0" 407 (07 107,07 \O o
S o o e o e o e o e e e e T S e B A e o B e 5 A e e 6 o B S D R SR R ISR St e e e e e A e e A o e e e
Y Y A OOy O oA O O OO Y O G B Y OV OO B Y Y O OY B AOY B O BT O O AOYOY O OO Y O Gy B G OY G O Y Y. OY aY Y ey B e Y. oY aY oY
S S S GG S S O R S S S S S A A O R S O S S

oS o

P
SN P R R i
G206 20 36 Sl L O IS S S S S S I O O I S A
center wavelength: 8.5um
g ° °

center wavelength: 10.7um
g * °

0.00525 J
« Labels v « Labels . o Labels . 0003637 L apels .,

+  output of NN oo0szg |+ Outputof NN ¢ 000365 | * OutPUTOfNN o Outputof NN *

0005204 & r 4 i Pk . . av’ ¥
3 # F . 0.00360 - " o, .

1. sl sie . .
] ! . ! «®
0005154 * s 1 . : 0.00515 . 0.00360 - i
. 7 : [y : . . . 0.00355 4 : *
. H < ¢ . * . . L]
8_ 0.00510 ‘. i 8_ 0.00510 : s g_ 0.00355 o g_ ¥ s
o : : o ¢ o b © 0.00350 Yo e
n ‘ n s . . ' 7] 2 7] s .
0.00505 ' . 0.00505 : . 0.00350 3 .
H - s T .
‘ L 4 . : 2 0.00345 | e
s ! [ ; 0.00345 3 . s ot
0.00500 1 3 xS 0.00500 x . : 1 A . ' ®
0 . o ¢ . °
.2 . wy & Y - 0.00340 - &

0.00495 000495 o« T e 0.00340 e B . o i o5
CH{3 trainingw«dataset * & CH13 testing dataset . CH14 training dataset = CH14 testing dataset .
I R T S R R R AT S A S > T R T A R T T R T UL L T A T T #

0\9“\9@9“\0“\0“\9D\p&&&u&%\pﬁ\pQ\’%\p&%\p&u&p&u& PR A AR AT Q\’B”‘@p A S O S S S S S LS LS S P S P o T PO A A A AU G
B S S S S o Sy ARG JAC M S i I S I L AL ) SRy
AT AR AR AR R AR AR AR DD AP AP P RIS OGO v i SO R S S

S
o o
A AR SRRSO I R R ¥

LIAG0 A0S0 0 0 R B MGG SIC GGG RIG G A G RG]

7 center wavelength: 12um center wavelength: 13.5um
NSMC NCSW K ERSEUFREHL))

Ly,




=

NSMC NCSKW

I2b1l4 The results of AIRC----Comparisons between the outputs of RCNN and
abels
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2.15 The evaluation of AIRC ---- for all the channels: gains error and BT
. erros.

TABLE III

ANALYSIS OF PREDICTION ERROR WITH RESPECT TO THE PROPORTIONAL DIFFERENCE OF ERROR IN SLOPE (%) AND
BRIGHTNESS TEMPERATURE ERROR (K)

Channel (A (%) a(A)(%) Bright temperature error (K)
Tramming  Testing | Traming  Testing Mean Value Standard Deviation
09 0.0060 0.0090 0.223 0.230 0.0027TK @ 260K 0.068K@260K
10 0.0014 0.0026 0.222 0.228 0.00087K @ 260K 0.076K@260K
11 -0.0035  -0.0023 0.140 0.142 -0.0018K@290K 0.073K@290K
12 -0.0023  -0.0018 0.108 0.110 -0.0014K @ 290K 0.069K @290K
13 -0.0076  -0.0070 0.201 0.205 -0.0053K@290K 0. 140K @290K
14 0.0236 0.0320 (0.868 0.896 0.0200K @ 260K 0.890K@260K

=

§ N _
NSMC NCSW ExLES

S

(ExR=EXRSE

MFREE L)

The maximum mean error of all the channels is less than 0.02K@260K




- 2.2 FY-3D MWRI ---- aIrc experiment in microwave band

1 antenna temperature

3 feed horn temperature

4 receiver temperature

5  receiver-control voltage

6 number of days since
launch

 NO. | Output
1 gains
2 offset

Problem:

The temperature

measurement of hot
MWRI on FY-3D was launched mirror lost function

~on 15, Nov.11, 2017 {k,b}=f(T _hot mirror)
£ M EXPESSHD (ERTEXSENTTESR]) T hot mirror x




n 3.21 The AIRC results of FY-3D MWRI---- Microwave Band

Temperatures of antenna and receiver Magnified view of left fig
Short-term: noticeable fluctuations

@.ﬁc ,gw ExXDESSRTL (BERTERSEUAERLD)




3.22 The results of MWRI----Comparisons of labels and outputs of RCNN
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3.1 Work ivioael 1

Train RC-Net befor launch, application after

launch
s e TN o L
/ Source-Based \ // Artificial Intelligence \
. . . . 1 . 1 . . \
{ Radiometric Calibration | I Radiometric Calibration |
I
I SBRC I | AIRC I
I . . . . I
| : I Radiometric Calibration | N
I BlackBody I Sensor : Neural Network (RCNN) I R | "’-L.‘_k_."' s
| I I ‘ —
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- 3.2 Work Model 2 Together with on-board blackbody calibration

° ® On-Orbit RC-15 mins
4.24 X—m-g @ AIRC-1 mins

Red points: RC gains fromblackbody every 15minutes

Blue points: RC gains from RCNN every 1 minutes
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! 3.3 Work Model 3

Together with GSICS

GSICS && AIRC

Eat nonw EXRDESZRHFO (ExRTEXRSEUFRES()

GSICS*Train RC-Net while SNO
AIRC: RCNW@
operational RC coefficients
Especially: large-aperture

sensors and small satellite

without on-board blackbody




3.4 Work Model 4

Train the RC-Net for partial-path RC while full-

- path RC
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L 4.1 Advantage of AIRC

1. Improve the operational RC accuracy

—— Any high accuracy calibration result could be usedto train RCNN for
generating high accuracy operational RC coefficients, and the RCNN accuracy
could be less than 0.01K. |

2. Make the operational calibration a greater timeliness
—— RCNN runs not only on ground-segment, but also on the satellite.
3. Save the weight and space for accommodating the on-board blackbody
—— Especially for the large-aperture sensors and small satellite.

4. Save the launch cost for reducing the weight of blackbody

et new BRIV ESRHL (ExRTEHRS[EUFIEHL)




4.2 Progress (Article and Patent —Chinese) and Next Plan:
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