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What is nowcasting?

* Nowcasting: For next 0~6 hour weather prediction, with a very high resolution (minute level and street

level)
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Application Scenarios of Nowcasting
T

* Disaster prevention agencies in preventing meteorological disasters
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Application Scenarios of Nowcasting

* Decision-making in smart agriculture, such as fertilization, and irrigation scheduling

Good timing for fertilization?

Strong wind damage to agriculture Flood damage to agriculture Hail damage



Application Scenarios of Nowcasting

* Smart city development, including applications in travel planning, taxi dispatch, and logistics optimization.

Outdoor sports meeting Outdoor meeting = Logistics optimization



Application Scenarios of Nowcasting

Operations in aviation, aerospace, and related fields
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Nowcasting of Severe Convections

Severe convection is a destructive meso- and micro-scale weather system often accompanied by heavy rainfall, strong winds, hail,

and lightning. Thus, accurate prediction of such phenomena is of critical importance.
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* Applications

> Prevention of disasters and secondary hazards, such as floods, mudslides, and landslides

» Smart city development by providing daily travel guidance to the public

» Smart agriculture by providing essential information for decisions on pesticide application, irrigation, or fertilization

» It provides flight operation guidance, such as takeoff/landing decisions, turbulence warnings and avoidance, and flight delay

predictions.



Challenges of Severe Convections Nowcasting

e Challenges :

> small scale
> short duration
> complex evolution

> convection initation




Convection Nowcasting: First generation method MSTCGAN

* MSTCGAN-Multi-Scale Time Conditional Generative Adversarial Network

Input Sarvellite Image Frames
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MSTCGAN Method

Kuai Dai, Xutao Li, Yunming Ye, Shanshan Feng, Danyu Qin, Rui Ye: MSTCGAN: Multiscale Time Conditional Generative Adversarial
Network for Long-Term Satellite Image Sequence Prediction. IEEE Trans. Geosci. Remote. Sens. 60: 1-16 (2022)



Convection Nowcasting: First generation mehtod MSTCGAN

e Generator of MSTCGAN
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Convection Nowcasting: First generation method MSTCGAN
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0~4h Satellite Prediction Comparison

e Results

256%256 512*512 A
Input/Output Model verage

+PSNR | MSE | MAE | GDL PSNR MSE MAE GDL PSNR MSE MAE GDL

Opticalflow-LK 24.40 384.62 12.58 4.98 24.13 40478 12.85 490 24.27 39470 12,72 494

ConvGRU 24.48 351.85 13.02 4.65 2406 371.88 1341 450 2427 361.87 1322 4.58

ConvLSTM 25.00 324.39 12.64 4.78 24.28 388.63 1398 464 24.64 35651 13.31 4.71

TrajGRU 25.01 341.37 12.93 4.72 23.26 604,79 16.10 5.73 24.14 47308 14.52 5.23

PredRINN 25.06 337.12 12.84 4.86 24.12 410.62 1467 464 2459 37387 1375 4.95

& — 16 PredRNN++ 24.775 337.38 13.33 4.84 2430 369.76 14.09 4.69 24,53 353.57 13.71 4.77
MIM 24.67 329.35 13.02 4.84 2410 375.16 14.18 470 2439 352,26 13.60 477

PhyDNet 24.21 327.41 13.08 4.86 2326 388,52 13.88 493 2374 35797 1348 490

SA-ConvLSTM 24.08 366.74 13.99 13.63 23.31 44929 1572 13.74 23,70 408.02 14.86 13.69
Conv-TT-LSTM 25.07 430.53 13.39 4.58 24.87 434.12 13.12 4.43 2497 43233 13.26 4.51

Conclusion: The MSTCGAN usually performs better than existing deep learning models and optical flow
model, which means the prediction location of MSTCGAN on clouds is more accurate.



0~4h Satellite Sequence Prediction Comparison

* Visual Comparison

Optical Flow-LK ConvGRU TrajGRU

PredRNN-++ Conv-TT-LSTM

PhyDNet
- -




Convection Nowcasting: Second generation method STCNet

e Spatial temporal consistence network (STCNet)

Predicted Satellite Image Sequence Input Satellite Image Sequence
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While MSTCGAN improves
the visual quality of
predicted sequences, it fails
to accurately model the
temporal correlations in
satellite sequences, resulting

1n less-eoherent movement
of convective clouds.

To enhance visual quality
while ensuring the
coherence of convective
cloud motion, this project
attempts to integrate
memory networks with a
generative adversarial
network architecture in
designing the extrapolation
model Spatial-Temporal
Consistency Network
(STCNet).




Convection Nowcasting: Second generation method STCNet

e Spatial temporal consistence network (STCNet)
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Kuai Dai, Xutao Li, Chi Ma, Shenyuan Lu, Yunming Ye, D1 Xian, Lin Tian, Danyu Qin: Learning Spatial-Temporal
Consistency for Satellite Image Sequence Prediction. IEEE Trans. Geosci. Remote. Sens. 61: 1-17 (2023)



0~4h Satellite Prediction Comparison

- ECERILE

) 256 x 256 512 x 512 Average
Model Size Free

T PSNR | MSE | MAE | GDL | LPIPS PSNR MSE MAE GDL LPIPS PSNR MSE MAE GDL LPIPS

Opticalflow-LK [19] Yes 2440 384.62 12.58 4.98 0.172 24.13 404.78 12.85 490 0.169 24.27 39470 12.72 4.94 0.171

ConvGRU [27] Yes 2448 351.85 13.02 4.65 0.352 24.06 371.88 1341 450 0.357 24.27 361.87 13.22 4.58 0.355
ConvLSTM [41] Yes 25.00 324.39 12.64 4.78 0.384 24.28 388.63 13.98 4.64 0.396 24.64 356.51 13.31 4.71 0.390
TrajGRU [57] No 25.01 341.37 1293 4.72 0.357 23.26 604.79 16.10 5.73 0.381 24.14 473.08 1452 5.23 0.369
PredRNN [23] Yes 25.06 337.12 12.84 4.86 0.434 24.12 410.62 14.67 4.64 0412 2459 373.87 13.75 4.75 0423
PredRNN++ [24] Yes 2475 337.38 13.33 4.84 0.406 24.30 369.76 14.09 4.69 0411 2453 353.57 13.71 4.77 0.409
MIM [25] Yes 24.67 329.35 13.02 4.84 0.405 24.10 375.16 14.18 4.70 0.413 24.39 35226 13.60 4.77 0.409
PhyDNet [45] No 2421 327.41 13.08 4.86 0.461 23.26 388.52 13.88 493 0.463 23.74 35797 13.48 4.90 0.462

SA-ConvLSTM [26] Yes 24.08 366.74 13.99 13.63 0.449 23.31 449.29 15.72 13.74 0.452 23.70 408.02 14.86 13.69 0.451
Conv-TT-LSTM [58] Yes 25.07 430.53 13.39 4.58 0.293 24.87 434.12 13.12 4.43 0.299 2497 432.33 13.26 4.51 0.296

MotionRNN [28] No 24.48 49541 13.83 4.59 0.350 23.21 63243 16.12 4.64 0.379 23.85 563.92 1498 4.62 0.365
LMC [46] Yes 26.52 234.15 9.76 4.96 0.446 26.31 243.18 9.79 482 0457 2642 238.67 9.78 4.89 0452
SimVP [42] Yes 26.59 223.77 9.69 4.80 0.447 2590 269.69 10.83 4.65 0.450 26.25 246.73 10.26 4.73 0.449
MSTCGAN [34] Yes 25.41 28091 11.06 4.68 0.233  24.33 326.25 1296 453 0.262 24.87 303.58 12.01 4.61 0.248
AFNO [50] No 25.22 271.63 11.32 8.25 0.431 2446 331.59 12.52 8.58 0470 2484 301.61 11.92 8.42 0451

STCNet (Ours) Yes 27.00 211.31 8.97 4.61 0.161 26.81 218.47 8.89 447 0.166 2691 214.89 893 4.54 0.164




0~4h Satellite Sequence Prediction Comparison
* Visual Comparison
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Conclusion: STCNet can more accurately predict the location of convection clouds, which maintains the visual effects and accuracy at
the same time.



0~4h Satellite Sequence Prediction Comparison

* Visual Sequence Prediction

Ground Truth Predicted (STCNet)



Convection Nowcasting: Third generation method DDMS

® A deep defusion method of satellite (DDMS)

® (~4 hour prediction of convection = (.32
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Convection Nowcasting: Third generation method DDMS
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0~4h Satellite Prediction Comparison
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Fig. 2 Quantitative evaluation of DDMS. Curves of the critical success index (CSI) and mean
absolute error (MAE) with nowcasting lead time averaged from May to August in 2022 (a) and
2023 (¢). Histograms of the CSI and MAE respectively for 2022 (b) and 2023 (d) May, June,
July, and August. Red (blue, grey) curves and bars indicate DDMS (NowcastNet, pySTEPS).



June 16, 2022 Case study

Observations DDMS MowcastMNet

T+2h
220

215

210

T+4h 205

Fig. 3 Case evaluation of a severe convection event with extreme rainstorm starting on 16
June 2022 in South China. This convection event i1s also accompanied by floods warning of the
Pearl River. The color denotes the predicted brightness temperature (K) of convective clouds.
The locations of the extreme event are marked with white boxes. The samples are cropped to
highlight local details. The state-of-the-art Al-based nowcasting baseline method NowcastNet
significantly underestimates the motion tendency of convective clouds 4 hours later. The
traditional baseline approach pySTEPS fails to model the growth and death of convective clouds
and significantly overestimates the motion tendency of convective clouds. The two methods fail
to deliver satisfactory 4-hour convection nowcasting, while our proposed DDMS produces much
more accurate nowcasting results.

Brightness temperature (K)



July 28, 2023 Case study (Beijing)

NowcastMNet

Observations

T+2h
220

215

210

T+4h e

Brightness temperature (K)

Fig. 4 Case evaluation of a severe convection event with extreme rainstorm starting on 29

July 2023 in Beijing-Tianjin-Hebei region of China. This convection event 1s affected by the
typhoon Dusuirer (in the rnightdown corner). The color denotes the predicted brightness

temperature of convective clouds. The locations of the extreme event are marked with white
boxes. The samples are cropped to highlight local details. Again, DDMS delivers accurate

nowcasting results while the state-of-the-art baselines fail to do this.



A FY-4A\4B Severe Convection Prediction System
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A FY-4A\4B Severe Convection Prediction System
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Challenges in Deep Learning-Based Nowcasting Methods on Radar Data

* 1: Asthe prediction goes on, the image become very blurry
e 2: Asthe prediction goes on, the high echo part is badly underestimate

e 3: Asthe prediction goes on, the prediction locations of clouds are not accurate

Tl



DiffCast: A Nowcasting Method Based on Deep Residual Diffusion Model

* Based on the Reynolds decomposition theory from fluid dynamics, a novel nowcasting framework, DiffCast,

1s proposed, which decomposes the system into an overall motion part and a local stochastic part

Current .
X Stochastic module T
Observations steps _ _

GTUNet |

{Déhbiéing }
——>
Loss
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J Deterministic
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[ Base predictor ]

Determinstic module HAHFuNzE R

Demin Yu, Xutao Li, Yunming Ye, Baoquan Zhang, Chuyao Luo, Kuai Dai, Rui Wang, Xunlai Chen: DiffCast: A Unified Framework via
Residual Diffusion for Precipitation Nowcasting. CVPR 2024: 27758-27767



Experiment Results

Table 1. Experiment results on four radar datasets. Relative improvements are shown with brackets.

Method SEVIR MeteoNet
1CSI 1CSI-pool4  1CSl-pooll6 THSS JLPIPS 1SSIM 1CSI1 1CSl-poold  TCSI-pooll6 THSS JLPIPS 158IM
SimVP[9] 0.2662 0.2844 0.3452 0.3369 0.3914 0.6304 0.3346 0.3383 04143 0.4568 0.3523 0.7557
DiffCast. SimVP 0.3077 0.4122 0.5683 0.4033 0.1812 0.6354 0.3511 0.5081 0.7155 0.4846 0.1198 0.7887
B (+15.59%) (+44.94%) (+64.63%) (+19.71%) (+53.70%) (+0.79%) | (+4.93%) (+50.19%) (+72.70%) (+6.09%) (+65.99%) (+4.37%)
Earthformer[8] 0.2513 0.2617 0.2910 0.3073 0.4140 0.6773 0.3296 0.3428 0.4333 0.4604 0.3718 0.7899
DiffCast Earthformer 0.2823 0.3868 0.5362 0.3623 0.1818 0.6420 0.3402 0.5020 0.7092 0.4696 0.1236 0.7967
(+12.34%) (+47.80%) (+84.26%) (+17.90%) (+56.09%) (-5.21%) | (+3.22%) (+46.44%) (+63.67%) (+2.00%) (+66.76%) (+0.86%)
MAU(3] 0.2463 0.2566 0.2861 0.3004 0.3933 0.6361 0.3232 0.3304 04165 0.4451 0.3089 0.7897
DiffCast MAU 0.2716 0.3789 0.5414 0.3506 0.1874 0.6729 0.3490 0.5030 0.7114 0.4822 0.1213 0.7665
(+10.27%) (+47.66%) (+89.23%) (+16.71%) (+52.35%) (+5.79%) | (+7.98%) (4+52.24%) (+70.80%) (+8.34%) (+60.73%) (-2.94%)
ConvGRU[27] 0.2416 0.2554 0.3050 0.2834 0.3766 0.6532 0.3400 0.3578 0.4473 0.4667 0.2950 0.7832
DiffCast ConvGRU 0.2772 0.3809 0.5463 0.3551 0.1880 0.6188 0.3512 0.4930 0.7001 0.4862 0.1244 0.7761
B (+14.74%) (+49.14%) (+79.11%) (+25.30%) (+50.08%) (-5.27%) | (+3.29%) (+37.719%) (+56.52%) (+4.18%) (+57.83%) (-0.91%)
PhyDnet([11] 0.2560 0.2685 0.3005 03124 0.3785 0.6764 0.3384 0.3824 0.4986 0.4673 0.2941 0.8022
DiffCast PhyDnet 0.2757 0.3797 0.5296 0.3584 0.1845 0.6320 0.3472 0.5066 0.7200 0.4802 0.1234 0.7788
(+7.70%) (+41.42%) (+76.24%) (+14.72% (+51.2%) (-6.56%) | (+2.60%) (+32.48%) (+44.40%) (+2.76%) (+58.04%) (-2.92%)
MCVD[34] 0.2148 0.3020 0.4706 0.2743 0.2170 0.5265 0.2336 0.3841 0.6128 0.3393 0.1652 0.5414
PreDiff[10] 0.2304 0.3041 0.4028 0.2986 0.2851 0.5185 0.2657 0.3854 0.5692 0.3782 0.1543 0.7059
STRPM[4] 0.2512 0.3243 0.4959 0.3277 0.2577 0.6513 0.2606 0.4138 0.6882 0.3688 0.2004 0.5996
Method Shanghai_Radar CIKM
TCSI +CSl-poold  1CSl-pooll6 TtHSS LLPIPS +SSIM 1CS1 1CSlI-pool4d  +CSl-pooll6 THSS LLPIPS 18SIM
SimVP[9] 0.3841 0.4467 0.5603 0.5183 0.2984 0.7764 0.3021 0.3530 0.4677 0.3948 0.3134 0.6324
DiffCast SimVP 0.3955 05116 0.6576 0.5296 0.1571 0.7902 0.2999 0.3657 0.5260 0.3874 0.2223 0.6391
(+2.97%)  (+14.53%) (+17.37%)  (+2.18%) (+47.35%) (+1.78%) | (-0.73%)  (+3.60%)  (+12.47%)  (-1.87%) (+29.07%) (+1.06%)
Earthformer(8] 0.3575 0.4008 0.4863 0.4843 0.2564 0.7750 0.3153 0.3547 0.4927 0.3828 0.3857 0.6510
DiffCast Earthformer 0.3751 0.4855 0.6212 0.5069 0.1586 0.7851 0.3099 0.3807 0.5509 0.3947 0.2259 0.6313
(+4.92%) (+2L13%)  (+27.74%)  (+4.67%) (+38.14%) (+1.30%) | (-1.71%)  (+7.33%)  (+11.81%) (+3.11%) (+41.43%) (-3.03%)
MAUI3] 0.3996 0.4695 0.5787 0.5356 0.2735 0.7303 0.2936 0.3152 0.4144 0.3660 0.3999 0.6277
DiffCast MAU 0.4089 0.5212 0.6658 0.5475 0.1618 0.7879 0.3158 0.3803 0.5443 0.4085 0.2205 0.6498
(+2.33%) (+11.01%) (+15.05%) (42.22%) (+40.84%) (+7.89%) | (+7.56%) (+20.65%) (+31.35%) (+11.61%) (+44.86%) (+3.52%)
ConvGRU[27] 0.3612 0.4439 0.5596 0.4899 0.2564 0.7795 0.3092 0.3533 0.4686 0.4007 0.3135 0.6601
DiffCast ConvGRU 0.3738 0.4923 0.6596 0.4945 0.1563 0.7809 0.3143 0.3681 0.5117 0.3967 0.2201 0.6418
B (+3.49%) (+1090%) (+17.87%) (+0.94%) (+39.04%) (+0.18%) | (+1.65%) (+4.19%) (+9.20%) (-1.00%)  (+29.79%) (+2.77%)
PhyDnet[11] 0.3653 0.4552 0.5980 0.4957 0.1894 0.7751 0.3037 0.3442 0.4655 0.3931 0.3631 0.6540
DiffCast_PhyDnet 0.3671 0.4907 0.6493 0.4986 0.1574 0.7780 0.3131 0.3836 0.5550 0.3990 0.2270 0.6156
(+0.49%) (+7.80%) (+8.58%) (+0.59%) (+16.90%) (+0.37%) | (+3.10%) (+11.45%) (+19.23%) (+1.50%) (+37.48%) (-5.87%)
MCVD[34] 0.2872 0.3984 0.5675 0.4036 0.2081 0.5119 0.2513 0.3095 0.4955 0.3294 0.2528 0.5358
PreDiff[10] 0.3583 0.4389 0.5448 0.4849 0.1696 0.7557 0.3043 0.3681 0.5117 0.3967 0.2201 0.6418
STRPM[4] 0.3606 0.4944 0.6783 0.4931 0.1681 0.7724 0.2984 0.3590 0.5020 0.3870 0.2397 0.6443
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Precipitation Nowcasting Model with Amplitude-Phase Decoupling: AlphaPre

* QOuridea: Spectral domain analysis shows that radar image amplitude and phase relate to precipitation, allowing

for the independent modeling of its positional and intensity changes.

Amplitude Precipitation
weaken Intensity weaken

Phase operation:  Precipitation
Adding noises area expansion

FFT FFT

Amplitude
Fixed

Phase operation: Precipitation Amplitude Precipitation
Linear operation area moving Strengthen Intensity strength

Lin K, Zhang B, Yu D, et al. AlphaPre: Amplitude-Phase Disentanglement Model for Precipitation Nowcasting. CVPR, 2025.



Model Architecture of AlphaPre
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Experiment Results
===

SEVIR MeteoNet
Type | CSI-MtT CSI-1811 CSI-2191 HSStT SSIMt MSE] | CSI-M1T  CSI-241  CSI-321  HSST SSIMT MSE]

ConvGRU | ND 0.2903 0.0879 0.0350 0.3619 0.6100 368.34 | 0.3401 0.2990 0.1431 04667 0.7833 12.85
MAU ND 0.3076 0.1071 0.0516 0.3863 0.6505 35548 | 0.3233 0.2839 0.0997 0.4452 0.7897 1292
SimVP ND 0.3108 0.1106 0.0517 0.3924 0.6508 383.56 | 0.3351 0.3002 0.1130  0.4573 0.7804 13.45
FourCastNet | ND 0.2686 0.0717 0.0339 0.3355 0.5976 410.27 | 0.3027 0.2533 0.1085 0.4216 0.6450 15.05
Earthformer | ND 0.2892 0.0844 0.0245 0.3665 0.6633 360.11 | 0.3205 0.2884 0.1237 04491 0.7772 1443
PhyDNet D 0.3017 0.1040 0.0278 0.3812 0.6532 357.63 | 0.3384 0.3194 0.1366  0.4673 0.7823 14.48
EarthFarseer | D 0.3004 0.0992 0.0413 0.3829 0.6327 388.91 | 0.3404 0.3170 0.1372 04726 0.7542 14.10
NowcastNet | D 0.2791 0.0770 0.0351 0.3512 0.6839 41294 | 0.3427 0.3206 0.1598 0.4751 0.7879 15.64
DiffCast D 0.3050 0.1300 0.0582 0.3996 0.6482 559.59 | 0.3512 0.3340 0.1808 0.4846 0.7887 17.93
AlphaPre D 0.3259 0.1332 0.0545 0.4110 0.6884 345.18 | 0.3824 0.3633 0.2002  0.5164 0.7968 12.74

Shanghai CIKM
Type | CSI-M1  CSI-35% CS1-40t  HSSt SSIMt  MSE| | CSI-Mt  CSI-351 CSI-401 HSSt  SSIMft MSE]

ConvGRU | ND 0.3612 0.3163 0.2062 0.4899 0.7796  33.56 | 0.3091 0.2009 0.1259 0.4006 0.6507 37.13
MAU ND 0.3983 0.3621 0.2417 0.5346 0.7195 3040 | 0.3039 0.2054 0.1241  0.3928 0.6325 40.74
SimVP ND 0.3850 0.3549 0.2382 0.5194  0.7795 3440 | 0.3052 0.2044 0.1321  0.3955 0.6538 38.06
FourCastNet | ND 0.3571 0.3108 0.2073 0.4868 0.5598 32.10 | 0.2980 0.1849 0.1015 0.3801 0.4359 36.14
Earthformer | ND 0.3503 0.3178 0.1872 0.4844 0.7298  35.57 0.3077 0.2039 0.1369  0.4001 0.6267 36.49
PhyDNet D 0.3654 0.3236 0.2176 0.4957 0.7751 36.41 0.3038 0.2052 0.1287  0.3931 0.6541 39.56
EarthFarseer | D 0.3926 0.3608 0.2343 0.5330 0.5405  32.68 0.3000 0.2046 0.1259 03911 0.6373 39.87
NowcastNet | D 0.3953 0.3608 0.2450 0.5334 0.7902 33.56 | 0.2991 0.1940 0.1188  0.3865 0.6713 40.96

D

D

DiffCast 0.4089 0.3740 0.2606 0.5476 0.7879  36.35 0.3159 0.2009 0.1457 0.4085 0.6499 4278
AlphaPre 0.4178 0.3854 0.2615 0.5534 0.7951 28.02 | 0.3194 0.2068 0.1416 0.4137 0.6568 35.18
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Physics-Mechanism-Guided Multi-Source Precipitation Forecasting Model

* Challenges:

How to incorporate the physical mechanism?
How to align the multi-model features?

How to robustly achieve the long-term prediction?

Radar 1
Ground Truth!

1 Multimodal
I Evolution
Satellite IAsynchrony
{

Ground Truth

Deterministic
Prediction U,

QOur Final
Prediction X



The architeture of PiMMNet

Deming Yu, Wenchuan Du, Kenghong Lin, Xutao Li, Yunming Ye, Chuyao Luo, Xunlai Chen. Introducing Multi-modal
Precipitation Nowcasting Via a Physics-Informed Perspective . ACM MM, 2025.



Experiment results
.

Dataset Type Model Preipitasion Skill Pl Sl CSI_M Comparison HSS_M Comparison
HSS-mf CSI-mT CSly-mf CSljg-mf CSI-thjyT CSI-thy,,T | LPIPS|
SimVP | 02403 01896 0.1913  0.2057  0.1198 0.0009 0.4398
... Earthformer | 02559 02045 02113 02282  0.1540 0.0032 0.4276
Deterministic
PastNet | 02571 02053 02120 02147  0.1035 0.0047 0.4245
Earthfarsser | 0.2638 02078  0.2070  0.2192  0.1343 0.0069 04385
§ Rain-F | 02481 02014 02097 02234  0.1150 0.0106 0.4154
K Multi-modal ~ STJointNet | 0.2657 02133 02291  0.2529  0.1438 0.0110 0.3858
Nowcastnet | 02760 02106 02549  0.3370 0598 00234 | 0.2487
Generative ~ CasCast | 02750 02134 02515 03498  0.1451 0.0287 | 0.2850 0.1 — 0 g
DiffCast | 0.2893  0.2259 02691 03601  0.1579 0.0286 0.2666 Time Step Time Step
Ours 03078 0.2380 0.2838  0.3946  0.1862  0.0374 | 0.2428 LPIPS Comparison
SimVP | 02651 01941 0.2089 02671  0.2183 0.0495 0.4534 Ours
... Earthformer | 02569 0.1888  0.1985 02196  0.2137 0.0486 0.4424 CasCast
Deterministic Earthfarseer
PastNet | 02467 01922 02064  0.2277 02137 0.0440 0.4658 |
. Farthfarsser | 02451 01789 01858 02227 01964 00446 | 04551 SITﬁJg;TtNet
% Rarin-F | 02583 01861  0.979 02202  0.2047 0.0523 05214 NeiGasthet
S Multi-modal ~ STJointNet | 0.2483  0.1805  0.1936  0.2266  0.2072 0.0376 0.5071
Nowcastnet | 02773 02114 02801 04174  0.2335 0.0802 | 0.2673
Generative ~ CasCast | 02631 01968 02636  0.4559  0.2162 0.0738 0.2765 e
DiffCast | 02790 02029 02701 04267  0.2231 0.0737 0.2897 i Siep
Ours 0.2904 02230 02771 04222 02529  0.0808 | 0.2662
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A nowcasting system on radar data

V..

Sy LD

¥2igAdE: 04830 06:00 ¥z AIE: 04830 06:06

THES

7 S il R
= 2/NET Bt B ) ol v =

O FHIhSRE



Thanks a lot!



