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Clouds are one of the most fundamental but complicated
components in the atmosphere

Cloud Coverage (%)

Over two-thirds of the From particle to global
globe is covered by clouds scales

(Yao et al., AR, 2020)



Clouds are one of the most fundamental but complicated
components in the atmosphere

TOA cloud radiative effects

(a) SWCRE (b) LWCRE
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Satellites play an important role for cloud detection

Long-term, wide range, and stable observations for:

> Better understanding of clouds

» Improve weather and climate models

Chinese Fengyun satellites are well developed, while
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Cloud optical and microphysical property retrievals
from spectral observations seem straightforward
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Cloud optical and microphysical property retrievals
from spectral observations seem straightforward

d
po-hLime)= LR —[1- W(T)]Ba(‘r)
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Cloud optical and microphysical property retrievals:
from forward RT models to retrieval algorithms

Forward RT

Atmospheric
Properties

(Clouds)

Satellite
Observations

(Nakajima and King, 1990)



Challenges

Microphysics: Macrophysics: System:
Ice Crystals Vertical structures Algorithms & Techniques

* Particle scattering

e Radiative transfer
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* Cloud model
* Retrieval algorithm

* Instrument information

* Atmospheric influences
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Let’s start from ice cloud crystals

» Actual ice crystals
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» Models are still complex and less representative



A two-habit model (THM) for ice crystals

* Single column structures
* Column combinations

* Roughened surface * Complex

* Simple

. Compact * Loose
V=0.65]3 V=0.026L5
a
Single- Ice cl
Crystal N ? " c. gy RT for
scattering optical !
model ] ] retrievals
properties properties

(Liu et al., ACP, 2014; Wang, Liu* et al., 2018)



Microphysical properties of the THM
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Polarized Reflectivities

Optical and Radiative Properties of the THM
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RT models for the forward simulations

Channel Spectral Response Function
Observational Geometries

Atmospheric Profile
Cloud/Aerosol Information
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(Yao et al., 2020; Ling et al., 2025)




Infrared
Radiatio

RT models for the forward simulations

Radiation

>

Bl

o

VN

~RGB Image B (c) MERSI-II: CHO6 (1.64 um (d) MERSI-lI: CH23 (8.5 um)
T =] 2 - e —— 3

o >

Simulation

Observation

127°wW - 125°W  123°W 127" 125°W  123°W 127°W 125°W 123°W

o

0.25 0.5 0.75 10 0.1 0.2 0.3 0.4 205 235 265 295
Reflectance Reflectance BT (K)

(b) AGRI: CHO6 (2.25 um) (c) AGRI: CH09 (6.25 pm) (d) AGRI: CH12 (10.7 pm)

Simulation

Observation

3 . o .
124°E 127°E 130°E 133°E E 124°E 127°E 130°E 133°E

0 0.25 0.5 0.75 10 01 0.2 0.3 0.4 205 220 235 250 205 235 265 295
Reflectance Reflectance BT (K) BT (K)

(Yao et al., 2020; Ling et al., 2025)



Cloud optical and microphysical property retrievals
from spectral observations seem straightforward

d
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Framework for Fengyun-3/4 COT and CER retrievals

THM for ice clouds
(Liu et al., 2014)

-

Radiative Transfer
(Yao et al., 2020)

-

Retrieval Algorithm
(Lai et al., 2019)
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and CER product

0.87 um reflectance



Cloud optical and microphysical properties for FY
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Cloud optical and microphysical properties for FY
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Cloud optical and microphysical properties for FY
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Limitations for current operational cloud retrievals

» Single-layer cloud assumption

> Limited vertical structure information



SRF

Can overlapping cloud properties be extracted?
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wavelength (micron)

» Typical overlapping
cloud type:
a lower water layer
beneath an upper ice
layer

» Shortwave infrared
channels are sensitive to
cloud microphysical and
phase properties

Wang, Liu* et al., RSE, 2018



Overlapping cloud detection
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Examples and comparison
with MODIS results
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Can overlapping cloud properties be extracted?

Signal to noise ratio (SNR) — to quantify the reflectance/BT sensitives of each

channel to each overlapping cloud properties
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Can overlapping cloud properties be extracted?
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YES! Overlapping cloud properties can be extracted

a) RGB
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40°S

(c) Cost Function
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Over 75% overlapping
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YES! Overlapping cloud properties can be extracted
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YES! Overlapping cloud properties can be extracted
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YES! Overlapping cloud properties can be extracted

Comparison of upper ice COT
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How about cloud base height?
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Cloud base height retrievals

/ Radiometer observations /
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Cloud base height retrievals
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Passive spectral observations can provide cloud

vertical structures

The multi-spectral observations can be used
to extract properties of the upper ice and

lower water clouds.

By combining passive and active statistics,

cloud base heights are inferred.

Teng, Liu* et al., GRL, 2020
Teng, Liu* et al., RSE, 2023




Conclusions

» Following fundamental ice cloud optical and radiative transfer
models, we developed the conventional cloud optical and
microphysical property retrieval algorithm for Fengyun spectral
imager operational products;

» By using multi-sensor and multi-spectral observations, we
developed overlapping cloud property retrieval algorithms to better
infer cloud vertical structures;

» Newly designed satellite instruments and channels provide new
opportunities for cloud property retrievals.

Thanks, and questions?



