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Space Weather – What & Why

• Variable conditions on the Sun, solar wind, magnetosphere, and 
ionosphere

• Impacts: satellite drag, GNSS accuracy, HF comms, radiation risk

• Geomagnetically induced currents threaten power grids

• Operations need credible short‑ term forecasts; planners need 
long‑ range scenarios



We Predict to Protect

• Goal: protect national space assets and ground infrastructure

• Approach: interpretable cycle + data‑ driven residuals + robust ops 
pipeline

• Deliver: accurate monthly updates and scenario bands for planning



Dataset Overview — NOAA F10.7
Publisher NOAA

Update status Archived

Time range Feb 14, 1947 to Apr 30, 2018

Spectral range               10.7 cm to 10.7 cm

Data columns total 2 columns

Column 0 time (yyyyMMdd)               25366 non-null  int64  

Column 1 (Target column) f107 (solar flux unit (SFU))  25366 non-null  float64



F10.7 Solar Radio Flux (10.7 cm)

• Long‑ running proxy (since 1947), correlated with EUV irradiance

• Operational relevance: thermospheric heating → satellite drag

• We use NOAA daily values → monthly means; Train/Val/Test 
chronological split



Hybrid Framework Overview

• Backbone in log‑ space: Fourier–SARIMAX (interpretable solar cycle)

• Residual learner: direct multi‑ step LSTM on log‑ residuals

• Raw learner: CNN‑ BiLSTM‑ Attention on standardized F10.7 + Fourier 
channels

• Validation‑ driven non‑ negative ensemble + affine calibration

• Operational 1‑ step walk‑ forward with rolling calibration and optional 
rolling re‑ weighting



Fourier Exogenous Drivers

• Harmonics at 132, 66, 24, 12 months (K small)



Fourier–SARIMAX (log‑ space) – Mathematics

• Let y_t be monthly F10.7; z_t = log(y_t).

• z_t = βᵀ φ(t) + ARIMA(p,d,q) + Seasonal(P,D,Q)_m + ε_t

• φ(t) = [sin(2πk t / P_j), cos(2πk t / P_j)] over periods P_j ∈ {132, 66, 24, 
12}

• Fit: small grids by AIC; re‑ fit best model; residuals r_t = z_t − ẑ_t 
(backbone)



Residual LSTM – Mathematics

• Input window: R_t = [r_{t−L+1}, …, r_t] → ℝ ^L

• Direct multi‑ step mapping: f_θ(R_t) = [r ̂_{t+1}, …, r ̂_{t+H}]

• Hybrid (log): ẑ_{t+h}^{hyb} = ẑ_{t+h}^{sarimax} + r ̂_{t+h}  ⇒  ŷ_{t+h} = 
exp(ẑ_{t+h}^{hyb})

• Loss: Huber(δ), Optimizer: Adam; early stopping + ReduceLROnPlateau



CNN‑ BiLSTM‑ Attention – Mathematics

• Input: X_t ∈ ℝ ^{L×(1+K_φ)} (standardized F10.7 and Fourier channels)

• Conv1D filters extract local patterns; BiLSTM encodes bidirectional 
temporal context

• Attention: e_τ = vᵀ tanh(W h_τ),  α_τ = softmax(e_τ),  c = Σ_τ α_τ h_τ

• Output: y ̂_{t+1: t+H} = W_o ReLU(W_c c + b) + b_o (direct multi‑ step)



Calibration and Ensemble – Mathematics

• Bias correction: y ̂' = y ̂ − mean_val(y ̂ − y)

• Affine calibration (VAL): y ≈ α y ̂' + β  (least squares)

• Convex ensemble (non‑ negative): minimize MSE_VAL of w₁  m₁  + w₂  
m₂  + w₃  m₃   s.t. w_i ≥ 0, Σ w_i = 1

• Rolling calibration / rolling weights in operations (12–24 months 
window)



Operational Walk‑ Forward (1‑ step ahead)

• Each month t: re‑ fit backbone on data ≤ t (fast, compact orders)

• Forecast t+1; predict residuals (LSTM) and raw 
(CNN‑ BiLSTM‑ Attention)

• Apply rolling calibration; optionally re‑ weight ensemble on recent 
12–24 months

• Prevents long‑ horizon drift; mirrors monthly operations



Evaluation Metrics

• Deterministic: R², MAE, RMSE, MAPE, sMAPE, Bias

• Correlation (Pearson) for phase tracking

• Leakage‑ safe splits; metrics reported for direct‑ horizon tests & 
walk‑ forward ops



Direct Test — All Candidates

• Baseline vs Hybrid vs Raw; Ensemble selected on VAL



Direct Test — Final Selected Forecast

• Selected model on direct Test period



Walk‑ forward — 1‑ step ahead (operational)

• Baseline (WF‑ cal) vs Hybrid (WF‑ cal) vs Raw NN (WF)



Walk‑ forward — Ensemble (rolling)

• Rolling convex ensemble tracks level & phase



30‑ Year F10.7 Scenarios

• Baseline cycle (mean), Hybrid median, and 10–90% band



Direct Test — MAE

• MAE by model (direct horizon)



Direct Test — RMSE

• RMSE by model (direct horizon)



Direct Test — MAPE

• MAPE by model (direct horizon)



Direct Test — sMAPE

• sMAPE by model (direct horizon)



Direct Test — Bias

• Bias by model (direct horizon)



Direct Test — R2

• R2 by model (direct horizon)



Fourier Design (Why log‑ space + harmonics?)

• Log transform stabilizes variance; exponentiation preserves positivity

• Harmonics encode known periodicities: 11y, 5.5y, quasi‑ biennial, 
annual

• Small K per period → efficient, avoids overfitting



Residual Learning (Why direct multi‑ step?)

• Avoids recursive error accumulation

• LSTM handles temporal dependencies in residuals

• Huber loss reduces sensitivity to spikes



Raw Model (Why Fourier channels?)

• Gives the NN explicit cycle context; improves phase tracking

• CNN captures local shape; BiLSTM captures medium‑ range dynamics

• Attention focuses on informative timesteps



Calibration & Guardrails

• Mean‑ bias removal and affine calibration reduce deployment bias

• Guardrail: do not deploy a model that underperforms the backbone on 
Validation

• Non‑ negative ensemble hedges model risk



Space Segment Impacts

• LEO satellites: drag spikes → orbit decay, collision risk

• Attitude control: increased torques from density & winds

• Radiation environment: component degradation, single‑ event upsets



Ground Segment & Services

• GNSS errors via ionospheric delay and scintillation

• HF radio blackouts and degraded comms

• Geomagnetically induced currents in long conductors (power grids, 
pipelines)



Operational Forecasting Pipeline

• Ingest latest F10.7 and exogenous features

• Re‑ fit SARIMAX (compact orders)

• Generate LSTM residual & raw NN forecasts

• Apply rolling calibration; compute ensemble

• Publish forecast + uncertainty; archive results



Limitations & Considerations

• Long‑ horizon (5‑ year) point predictions have large uncertainty

• Under‑ amplitude near peaks without richer exogenous inputs

• Model performance depends on calibration window choice



Future Work

• Integrate sunspots, Mg‑ II, EUV as exogenous drivers

• Probabilistic neural nets (quantiles) and seasonal‑ aware transformers

• Extend to Kp/Ap, Dst and coupled drag prediction



Conclusions — We Predict to Protect

• Hybrid AI marries interpretability (cycle) with learned nonlinearity 
(residuals)

• Operational walk‑ forward achieves strong accuracy with low bias

• Scenario bands support strategic planning; monthly updates protect 
assets
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Appendix

Model structures, training configs, additional figures



Model Config Summary

• Residual LSTM: L=132–156, H=direct horizon or 1‑ step; 128/64 units; 
Dropout 0.25; Huber loss; Adam 5e‑ 4

• Raw CNN‑ BiLSTM‑ Attention: Conv1D(32,64), BiLSTM(64), Attention, 
Dense(128), Huber; Adam 5e‑ 4

• Fourier–SARIMAX: compact (p,d,q), optional seasonal(·)_12; exog φ(t) 
with K per period



Evaluation Protocol

• Leakage‑ safe chronology; Validation for selection and calibration

• Test for reporting; Walk‑ forward 1‑ step for operations

• Metrics: R², MAE, RMSE, MAPE, sMAPE, Bias, Corr


