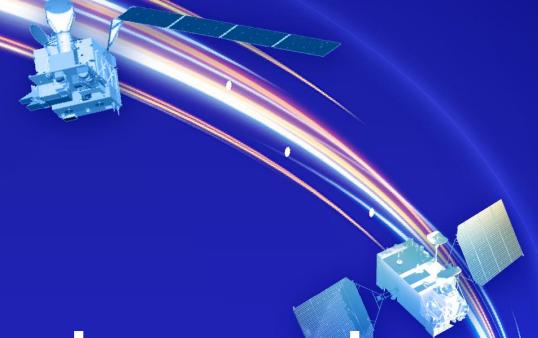


AOMSUC-15 FYSUC-2025

FIFTEENTH ASIA-OCEANIA METEOROLOGICAL SATELLITE USERS' CONFERENCE
THE JOINT 2025 FENGYUN SATELLITE USER CONFERENCE



Enhanced Space Weather Forecasting through Machine Learning

Mohamed Alsayed Zaki Embaby¹,

Dr. Ammar Mohamed², Dr. Dalia Elfiky³

¹ Director of the Space Mission Design and Operation Department, Egyptian Space Agency, Cairo, Egypt

² Professor of Computer Science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt

³ Head of Structure, Thermal Control and Space Environment Dept., National Authority for Remote Sensing and Space Sciences, Egypt

AOMSUC-15 FYSUC-2025

FIFTEENTH ASIA-OCEANIA METEOROLOGICAL SATELLITE USERS' CONFERENCE
THE JOINT 2025 FENGYUN SATELLITE USER CONFERENCE

Enhanced Space Weather Forecasting through Machine Learning

Mohamed Alsayed Zaki Embaby¹,

Dr. Ammar Mohamed², Dr. Dalia Elfiky³

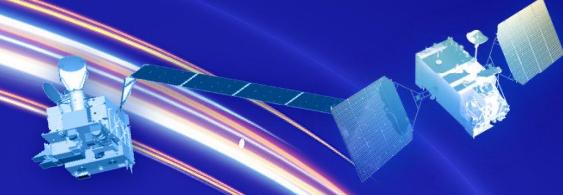
¹ Director of the Space Mission Design and Operation Department, Egyptian Space Agency, Cairo, Egypt

² Professor of Computer Science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt

³ Head of Structure, Thermal Control and Space Environment Dept., National Authority for Remote Sensing and Space Sciences, Egypt

AOMSUC-15 FYSUC-2025

FIFTEENTH ASIA-OCEANIA METEOROLOGICAL SATELLITE USERS' CONFERENCE
THE JOINT 2025 FENGYUN SATELLITE USER CONFERENCE



Agenda

- Motivation: Why Space Weather forecasting matters
- Data & F10.7 proxy
- Hybrid Methodology: Fourier–SARIMAX, Residual LSTM, CNN- BiLSTM- Attention
- Calibration, Ensembles, and Walk- Forward Operations
- Evaluation: Metrics and Results
- 30- Year Scenario Bands
- Conclusions, Limitations, Future Work

► Space Weather – What & Why

- Variable conditions on the Sun, solar wind, magnetosphere, and ionosphere
- Impacts: satellite drag, GNSS accuracy, HF comms, radiation risk
- Geomagnetically induced currents threaten power grids
- Operations need credible short- term forecasts; planners need long- range scenarios

► We Predict to Protect

- Goal: protect national space assets and ground infrastructure
- Approach: interpretable cycle + data- driven residuals + robust ops pipeline
- Deliver: accurate monthly updates and scenario bands for planning

► Dataset Overview — NOAA F10.7

Publisher	NOAA
Update status	Archived
Time range	Feb 14, 1947 to Apr 30, 2018
Spectral range	10.7 cm to 10.7 cm
Data columns	total 2 columns
Column 0	time (yyyyMMdd) 25366 non-null int64
Column 1 (Target column)	f107 (solar flux unit (SFU)) 25366 non-null float64

► F10.7 Solar Radio Flux (10.7 cm)

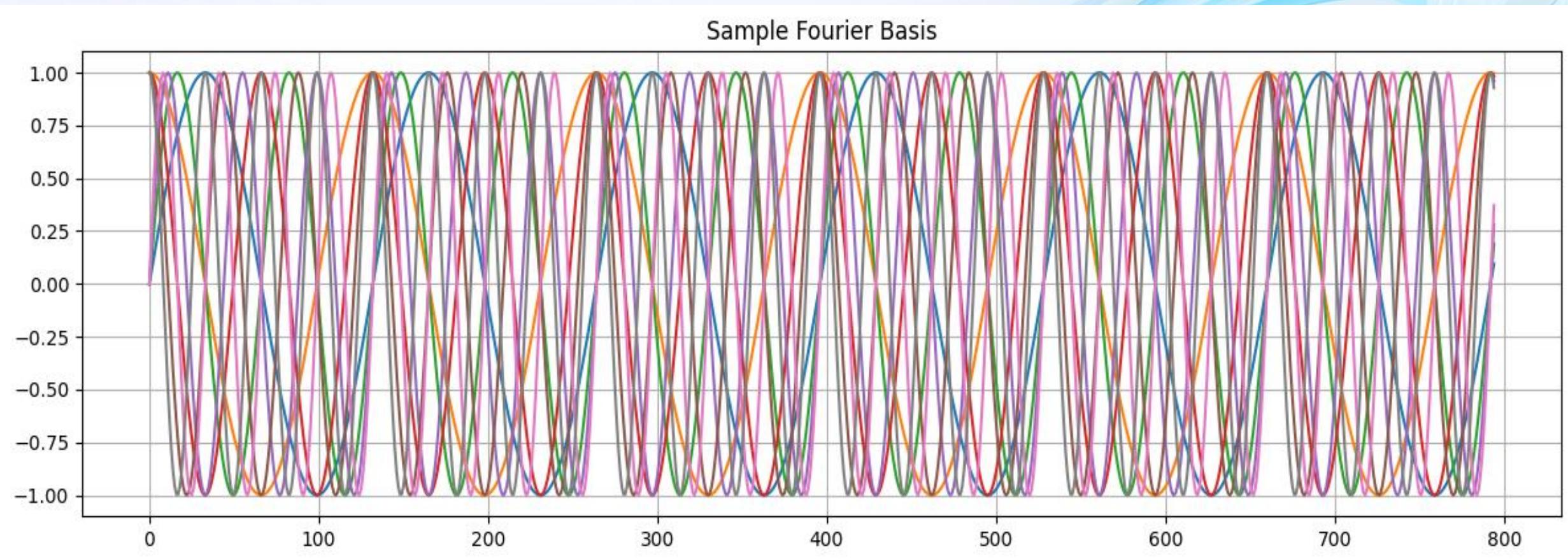
- Long- running proxy (since 1947), correlated with EUV irradiance
- Operational relevance: thermospheric heating → satellite drag
- We use NOAA daily values → monthly means; Train/Val/Test chronological split

► Hybrid Framework Overview

- Backbone in log- space: Fourier–SARIMAX (interpretable solar cycle)
- Residual learner: direct multi- step LSTM on log- residuals
- Raw learner: CNN- BiLSTM- Attention on standardized F10.7 + Fourier channels
- Validation- driven non- negative ensemble + affine calibration
- Operational 1- step walk- forward with rolling calibration and optional rolling re- weighting

▶ Fourier Exogenous Drivers

- Harmonics at 132, 66, 24, 12 months (K small)



► Fourier–SARIMAX (log- space) – Mathematics

- Let y_t be monthly F10.7; $z_t = \log(y_t)$.
- $z_t = \beta^\top \varphi(t) + \text{ARIMA}(p,d,q) + \text{Seasonal}(P,D,Q)_m + \varepsilon_t$
- $\varphi(t) = [\sin(2\pi k t / P_j), \cos(2\pi k t / P_j)]$ over periods $P_j \in \{132, 66, 24, 12\}$
- Fit: small grids by AIC; re-fit best model; residuals $r_t = z_t - \hat{z}_t$ (backbone)

► Residual LSTM – Mathematics

- Input window: $R_t = [r_{t-L+1}, \dots, r_t] \rightarrow \mathbb{R}^L$
- Direct multi- step mapping: $f_\theta(R_t) = [\hat{r}_{t+1}, \dots, \hat{r}_{t+H}]$
- Hybrid (log): $\hat{z}_{t+h}^{hyb} = \hat{z}_{t+h}^{sarimax} + \hat{r}_{t+h} \Rightarrow \hat{y}_{t+h} = \exp(\hat{z}_{t+h}^{hyb})$
- Loss: Huber(δ), Optimizer: Adam; early stopping + ReduceLROnPlateau

► CNN- BiLSTM- Attention – Mathematics

- Input: $X_t \in \mathbb{R}^{L \times (1+K_\phi)}$ (standardized F10.7 and Fourier channels)
- Conv1D filters extract local patterns; BiLSTM encodes bidirectional temporal context
- Attention: $e_\tau = v^\top \tanh(W h_\tau)$, $\alpha_\tau = \text{softmax}(e_\tau)$, $c = \sum_\tau \alpha_\tau h_\tau$
- Output: $\hat{y}_{\{t+1: t+H\}} = W_o \text{ReLU}(W_c c + b) + b_o$ (direct multi-step)

Calibration and Ensemble – Mathematics

- Bias correction: $\hat{y}' = \hat{y} - \text{mean_val}(\hat{y} - y)$
- Affine calibration (VAL): $y \approx \alpha \hat{y}' + \beta$ (least squares)
- Convex ensemble (non-negative): minimize MSE_VAL of $w_1 m_1 + w_2 m_2 + w_3 m_3$ s.t. $w_i \geq 0, \sum w_i = 1$
- Rolling calibration / rolling weights in operations (12–24 months window)

► Operational Walk- Forward (1- step ahead)

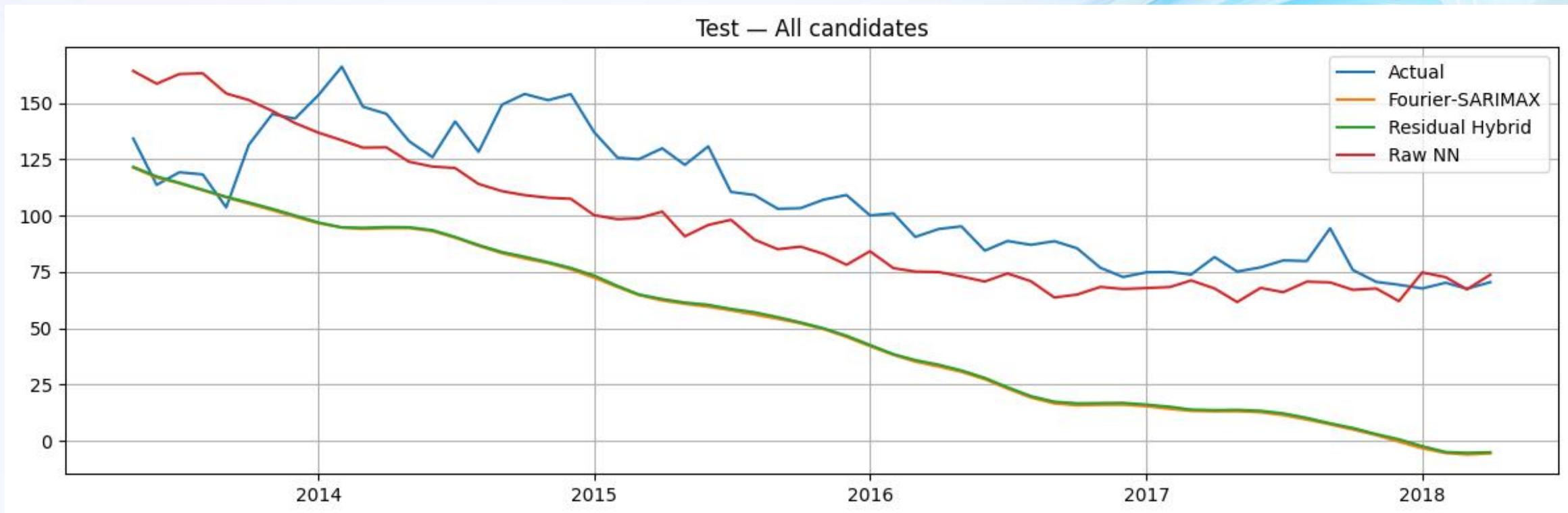
- Each month t : re-fit backbone on data $\leq t$ (fast, compact orders)
- Forecast $t+1$; predict residuals (LSTM) and raw (CNN- BiLSTM- Attention)
- Apply rolling calibration; optionally re-weight ensemble on recent 12–24 months
- Prevents long- horizon drift; mirrors monthly operations

► Evaluation Metrics

- Deterministic: R^2 , MAE, RMSE, MAPE, sMAPE, Bias
- Correlation (Pearson) for phase tracking
- Leakage- safe splits; metrics reported for direct- horizon tests & walk- forward ops

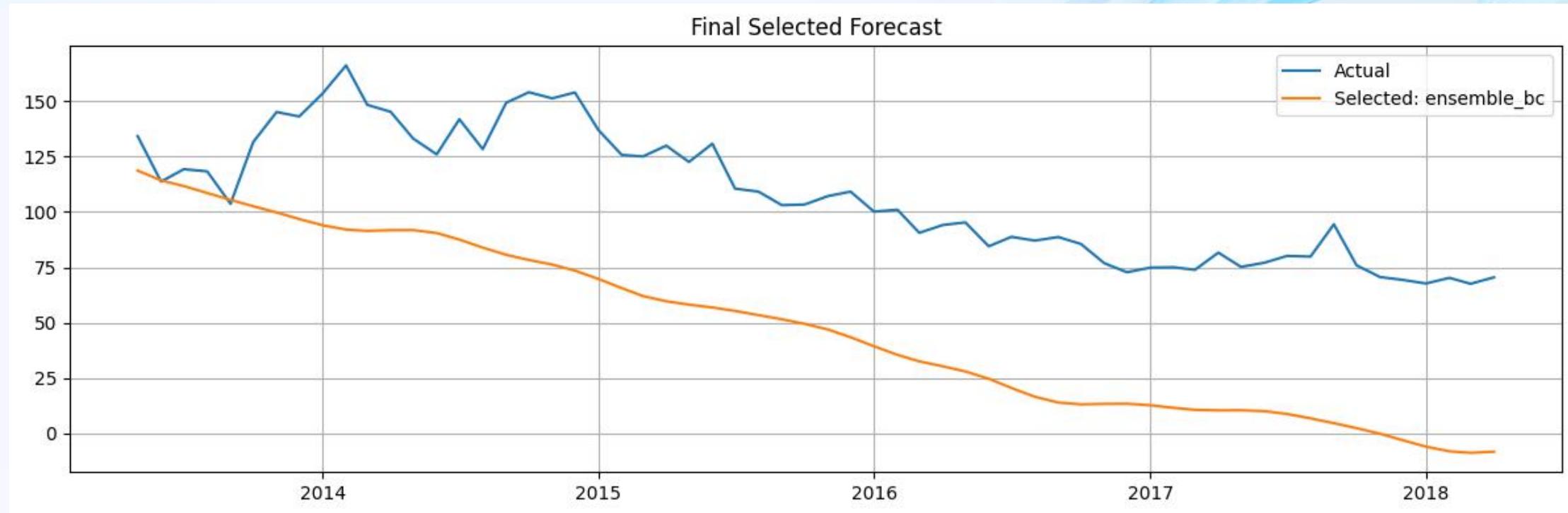
► Direct Test — All Candidates

- Baseline vs Hybrid vs Raw; Ensemble selected on VAL



► Direct Test — Final Selected Forecast

- Selected model on direct Test period



Walk-forward — 1-step ahead (operational)

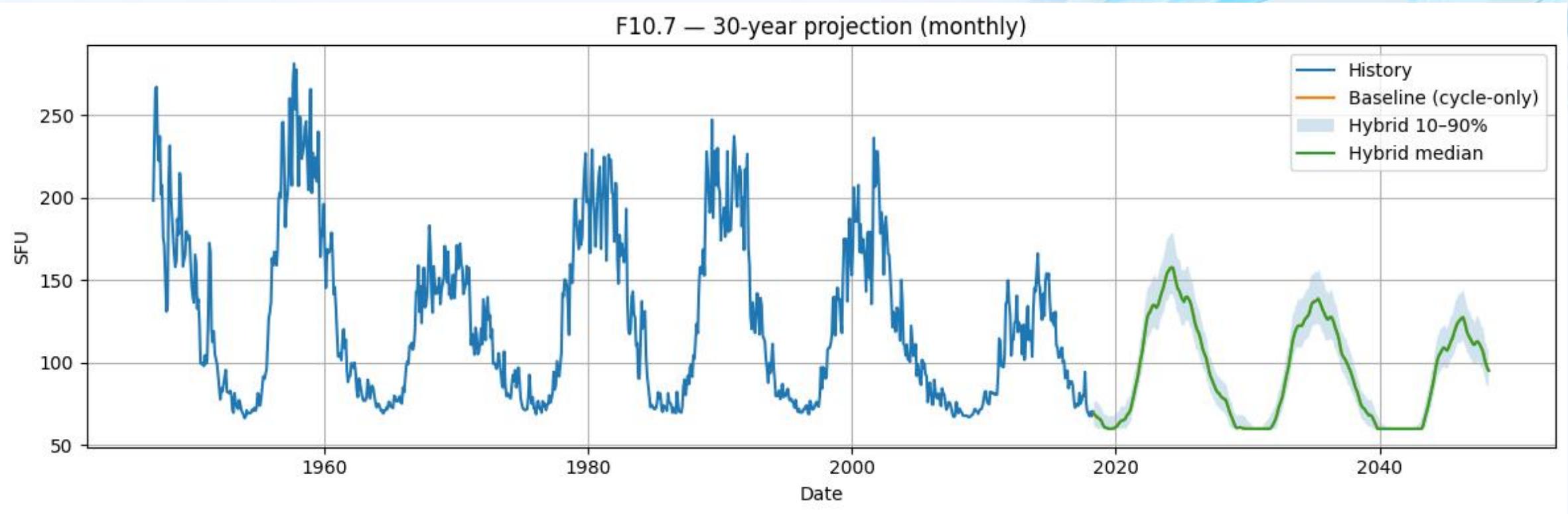
- Baseline (WF-cal) vs Hybrid (WF-cal) vs Raw NN (WF)

Walk-forward — Ensemble (rolling)

- Rolling convex ensemble tracks level & phase

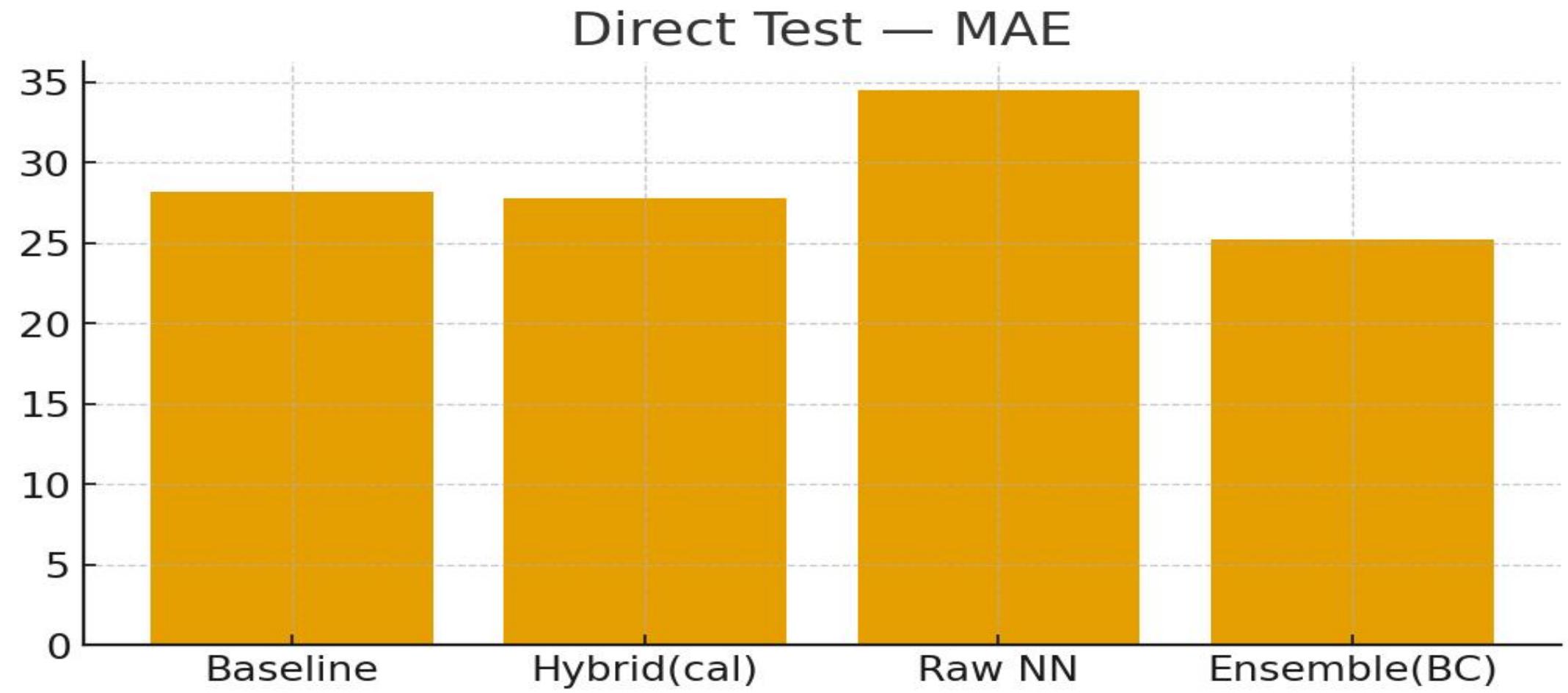
► 30- Year F10.7 Scenarios

- Baseline cycle (mean), Hybrid median, and 10–90% band



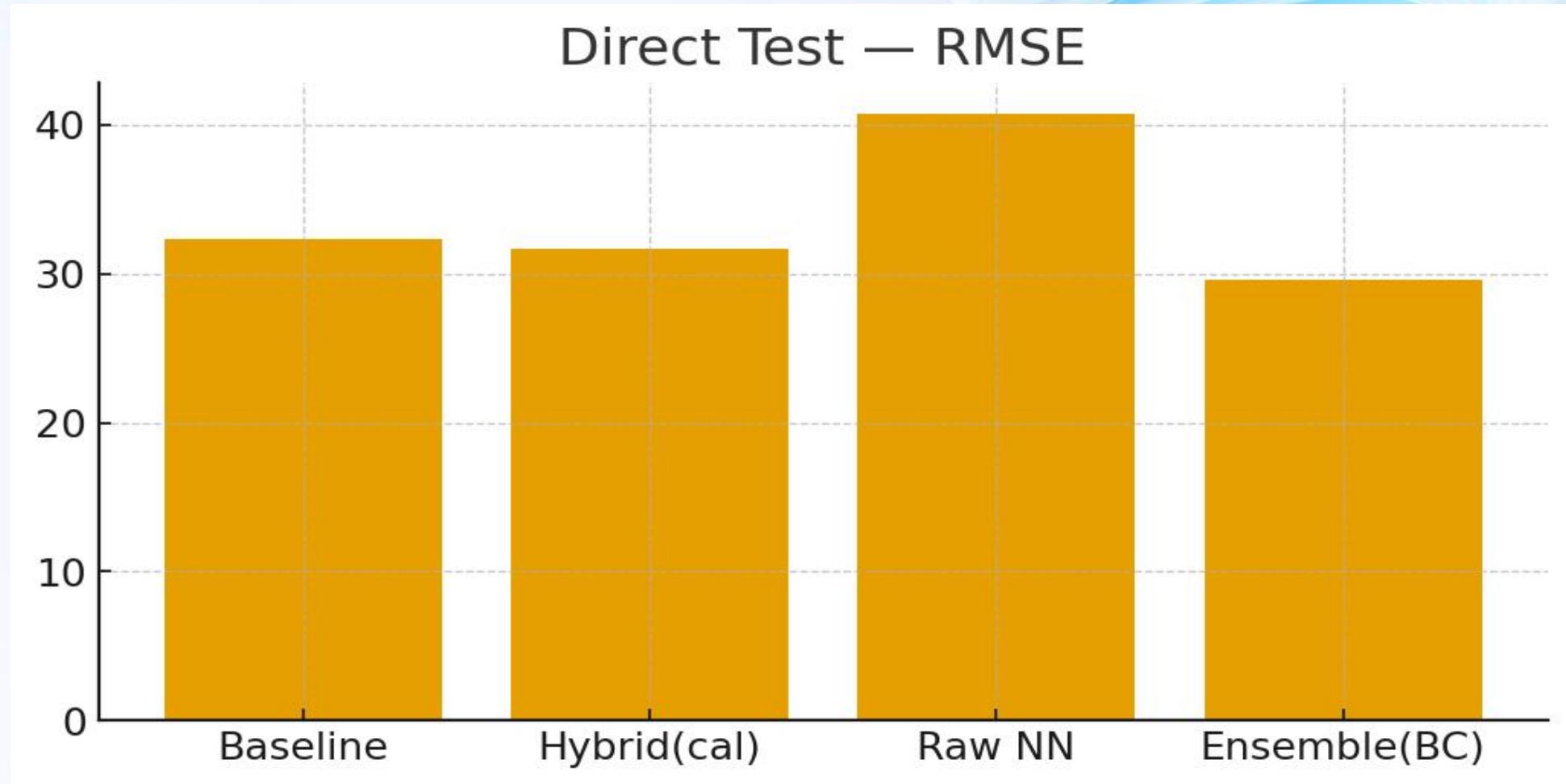
► Direct Test — MAE

- MAE by model (direct horizon)



► Direct Test — RMSE

- RMSE by model (direct horizon)



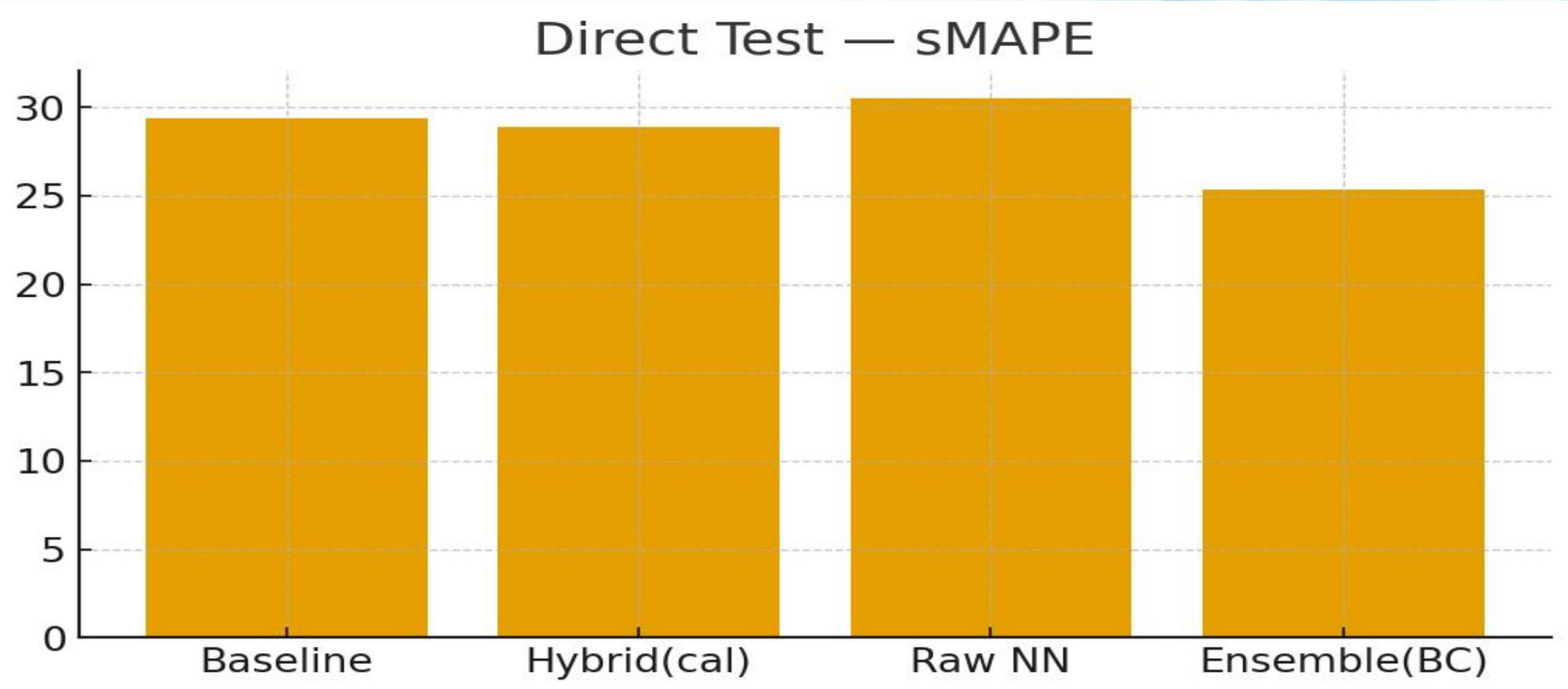
► Direct Test — MAPE

- MAPE by model (direct horizon)



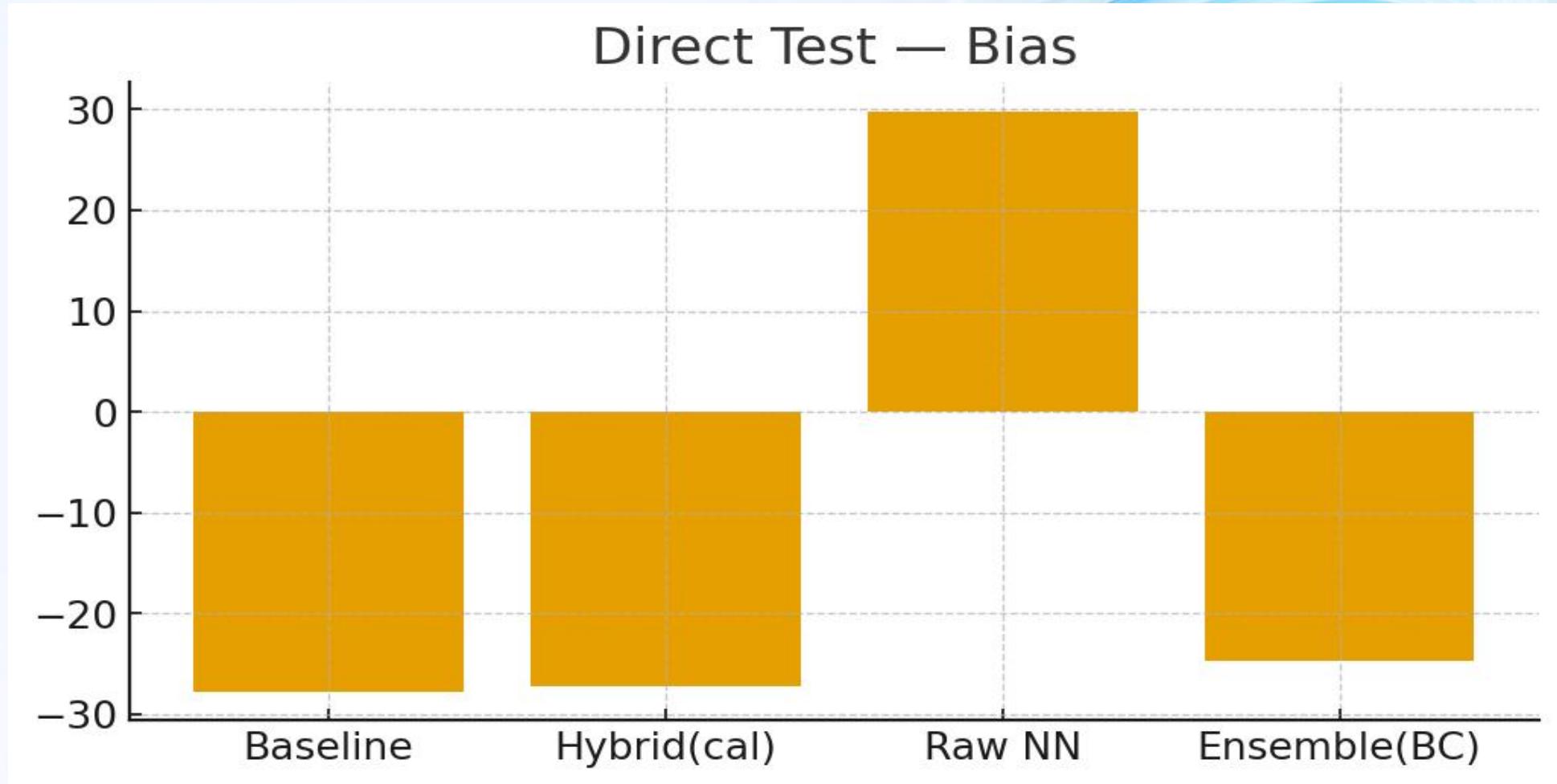
► Direct Test — sMAPE

- sMAPE by model (direct horizon)



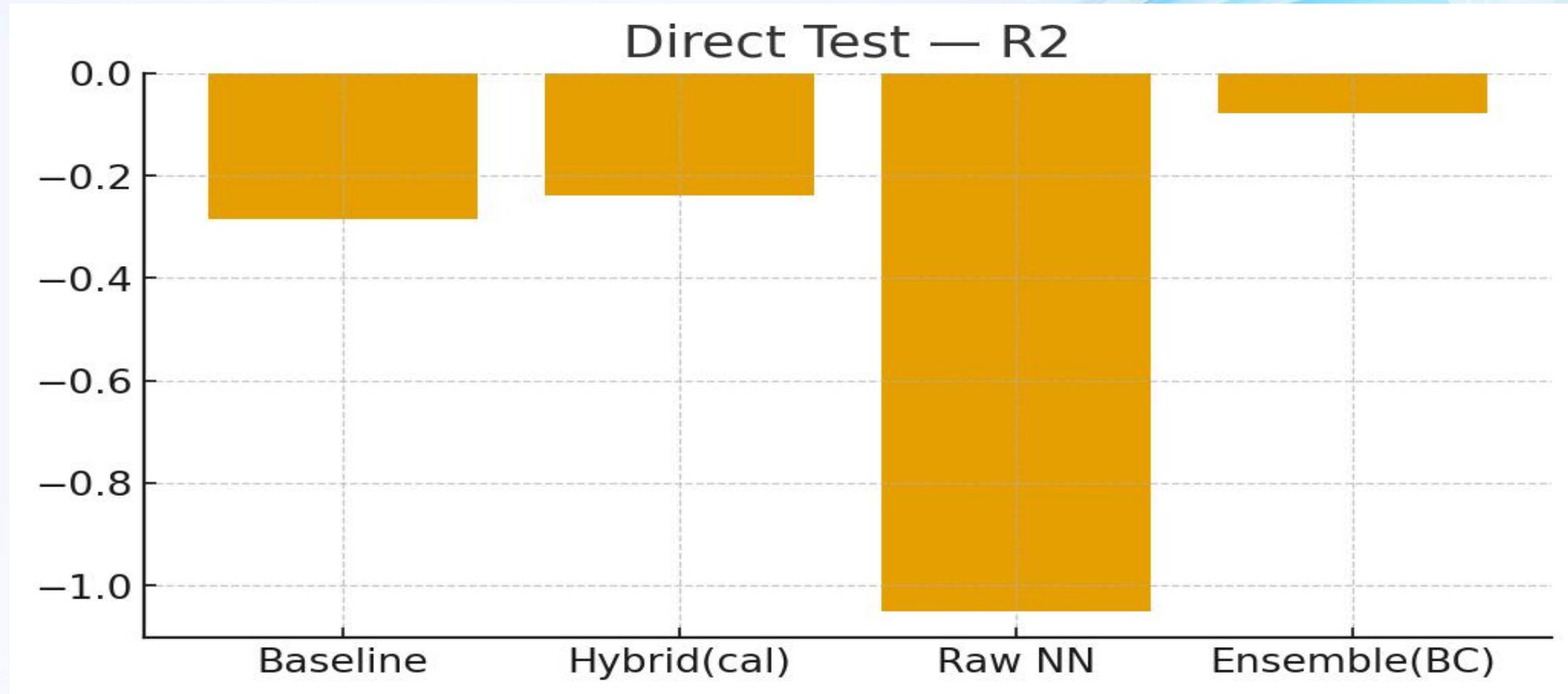
► Direct Test — Bias

- Bias by model (direct horizon)



► Direct Test — R2

- R2 by model (direct horizon)



► Fourier Design (Why log- space + harmonics?)

- Log transform stabilizes variance; exponentiation preserves positivity
- Harmonics encode known periodicities: 11y, 5.5y, quasi- biennial, annual
- Small K per period → efficient, avoids overfitting

► **Residual Learning (Why direct multi- step?)**

- Avoids recursive error accumulation
- LSTM handles temporal dependencies in residuals
- Huber loss reduces sensitivity to spikes

► Raw Model (Why Fourier channels?)

- Gives the NN explicit cycle context; improves phase tracking
- CNN captures local shape; BiLSTM captures medium- range dynamics
- Attention focuses on informative timesteps

▶ Calibration & Guardrails

- Mean- bias removal and affine calibration reduce deployment bias
- Guardrail: do not deploy a model that underperforms the backbone on Validation
- Non- negative ensemble hedges model risk

► Space Segment Impacts

- LEO satellites: drag spikes → orbit decay, collision risk
- Attitude control: increased torques from density & winds
- Radiation environment: component degradation, single- event upsets

► **Ground Segment & Services**

- GNSS errors via ionospheric delay and scintillation
- HF radio blackouts and degraded comms
- Geomagnetically induced currents in long conductors (power grids, pipelines)

► Operational Forecasting Pipeline

- Ingest latest F10.7 and exogenous features
- Re-fit SARIMAX (compact orders)
- Generate LSTM residual & raw NN forecasts
- Apply rolling calibration; compute ensemble
- Publish forecast + uncertainty; archive results

► Limitations & Considerations

- Long- horizon (5- year) point predictions have large uncertainty
- Under- amplitude near peaks without richer exogenous inputs
- Model performance depends on calibration window choice

► Future Work

- Integrate sunspots, Mg- II, EUV as exogenous drivers
- Probabilistic neural nets (quantiles) and seasonal- aware transformers
- Extend to Kp/Ap, Dst and coupled drag prediction

► Conclusions — We Predict to Protect

- Hybrid AI marries interpretability (cycle) with learned nonlinearity (residuals)
- Operational walk-forward achieves strong accuracy with low bias
- Scenario bands support strategic planning; monthly updates protect assets

► References

- Tapping (2013) Space Weather — F10.7 overview
- Hathaway (2015) Living Reviews in Solar Physics — The Solar Cycle
- Pesnell (2012) Solar Physics — Solar Cycle Predictions
- Cameron & Schüssler (2015) Science — The solar dynamo
- McIntosh et al. (2020) Solar Physics — Overlapping magnetic cycles

► References

- Box, Jenkins & Reinsel (1994) — Time Series Analysis
- Hyndman & Athanasopoulos (2021) — Forecasting: Principles and Practice
- Durbin & Koopman (2012) — State Space Methods
- Hochreiter & Schmidhuber (1997) — LSTM
- Graves & Schmidhuber (2005) — BiLSTM

► References

- Bahdanau et al. (2015) — Attention (soft alignment)
- Vaswani et al. (2017) — Attention Is All You Need
- Hyndman & Khandakar (2008) — Auto-ARIMA
- NOAA SWPC & LASP LISIRD — F10.7 data resources
- Pedregosa et al. (2011) — Scikit-learn

Appendix

Model structures, training configs, additional figures

► Model Config Summary

- Residual LSTM: $L=132-156$, H =direct horizon or 1- step; 128/64 units; Dropout 0.25; Huber loss; Adam $5e-4$
- Raw CNN- BiLSTM- Attention: Conv1D(32,64), BiLSTM(64), Attention, Dense(128), Huber; Adam $5e-4$
- Fourier-SARIMAX: compact (p,d,q) , optional seasonal(\cdot)₁₂; exog $\varphi(t)$ with K per period

► Evaluation Protocol

- Leakage- safe chronology; Validation for selection and calibration
- Test for reporting; Walk- forward 1- step for operations
- Metrics: R^2 , MAE, RMSE, MAPE, sMAPE, Bias, Corr