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INTRODUCTION

Atmosphere total precipitable water vapor (PWV) serves as a key indicator of column-integrated
atmospheric moisture, tightly linked to precipitation dynamics and climate feedback mechanisms.
Studies show that abrupt PWV increases often precede precipitation events within 2 hours, while its role
as the most abundant greenhouse gas contributes ~70% of atmospheric radiative absorption, driving
global warming processes. Consequently, PWV plays a fundamental role in weather forecasting, climate

modeling, and remote sensing atmospheric correction, underscoring the need for continuous, high-
quality monitoring.
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Current PWV monitoring employs ground- and space-based approaches. Ground instruments—
including radiosondes, GPS networks, microwave radiometers, sun photometers, and Raman lidars—
offer high accuracy but suffer from sparse spatial coverage, particularly over deserts, oceans, and lakes.
Satellite platforms with near-infrared (NIR), thermal-infrared (TIR), and passive microwave sensors can
provide global coverage.
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However, NIR/TIR retrievals are ineffective under cloudy skies due to clouds cover. Microwave
observations overcome this limitation by penetrating clouds, enabling all-weather PWV retrieval.
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2. DATA——2018 and 2019

€ FY-3D MWRI brightness temperature data as main input data.
€ DEM and land cover types data as auxiliary input data.

€ Passive microwave brightness temperature index.

€ SuomiNet PWV data as validation data.

Microwave Atmospheric Water Vapor Index:

MAWVI = ATD,ZB.B/ATD,IB.T
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3. METHOD——Physical and machine learning methods

A . € Random Forest Model.
Tb,i,p = Ta,i + 7 gi,p ) TS + (1 — gi,p)Ti ’ Ta,i L 2 nght GBM.
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4. RESULTS AND DISCUSSIONS

Random Forest

RandonForest Scatter Density Plot (Full Features} RendonForest Scatter Density Plot (Optimal Features — New Data)
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These pictures show the all-weather PWV
distribution maps over the study area on the
15th day of January, April, July, and October
2019. The left column shows the
measurements from SuomiNet stations, the
middle column presents the retrieval results
from FY-3D MWRI, and the right column
displays the scatter density plots comparing
the station measurements with the retrieval
results. Notably, the passive microwave
remote sensing-based land PWV monitoring
(middle column) achieves spatially
continuous coverage (excluding gaps),
offering distinct advantages for enhancing
weather forecasting accuracy and advancing
global climate change research compared to
the discrete SuomiNet station observations.
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5. CONCLUSIONS

This study presents an all-weather PWV over land retrieval method using FY-3D microwave data.
Firstly, through the transformation and approximation of the Radiative Transfer Model, it was found
that channel brightness temperature, LST, and LSE were the main factors affecting PWV. Meanwhile,
combining the achievements of previous studies, DEM, land use types, microwave brightness
temperature indices, etc. are used as the input parameters in three machine learning methods,
validated against SuomiNet-measured PWV as ground-truth values. Comparative analysis reveals
that Light GBM achieves the highest accuracy, with an average RMSE of approximately 4 mm
throughout 2019. Predictions and mapping were performed using the Light GBM model for the 15th
day of January, April, July, and October 2019, and the results show excellent agreement with the
distribution trends of SuomiNet data, demonstrating robust performance.

This research provides an all-weather PWV retrieval framework with improved accuracy and spatial

coverage, offering valuable insights for microwave remote sensing applications in meteorology and
climate research.
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Thank you for your attention!
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